Increasing usage for C++ new operators based on data model indexes?
-
This is getting pretty ridiculous ...
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
Only if you do not use the construct “placement new”.
Yeah, which I have a creeping suspicion you haven't. The so called placement new is nothing more than going around calling constructors on a preallocated memory block. So where is this preallocated memory going to come from? It's going to materialize from the ether?
If you're intent on pushing this make-you-own-heap-for-models, I advise to create a proof-of-concept first, then we can have something to base a discussion on, otherwise - thanks but no thanks, I'm out of this conversation.
-
The so called placement new is nothing more than going around calling constructors on a preallocated memory block.
I agree on this aspect.
But can you pass a “model index” as another allocation parameter (for existing data) to this C++ operator?
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
Only if you do not use the construct “placement new”.
Is your plan to do exactly what
dynamic_cast
does but using anew
operator? I mean it's possible but I don't see why you'd want to do it. How would you implement it?guess that the run time consequences are more interesting then for the distinction if only pointers are transferred or complete “value objects” are copied.
There are software applications where more data transfers might not have a directly noticeable effect. But I guess that some C++ programmers have got a strong focus on software efficiency.@VRonin said in Increasing usage for C++ new operators based on data model indexes?:
having your objects implicitly shared
With implicitly shared objects, the distinction from a pointer to a complete value object when copying is just an operator++ on an
int
. 1 atomic instruction. 100000 times more efficient than adynamic_cast
.
If you want to go into memory difference it's 32bits more. If 32 bits break your design then it's the design itself that comes into question -
Is your plan to do exactly what
dynamic_cast
does but using anew
operator?Maybe.
But these C++ operations provide different functionality, don't they?
With implicitly shared objects, the distinction from a pointer to a complete value object when copying is just an operator++ on an
int
.Will it become nicer to avoid (or reduce) even the influence of object reference counting?
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
Will it become nicer to avoid (or reduce) even the influence of object reference counting?
C++ is moving in the opposite direction actually. If you try to suggest replacing
std::shared_ptr
(which is a pointer + a reference counter) with raw pointers on Stack Overflow you'd better bring a helmet and kevlar vest because you are going to get shot.
The ISO C++ style guide goes one step further and even discourages the use of owning raw pointer and suggest ownership encapsulation (an implicitly shared object behaves as a smart pointer). If you don't like it, good luck convincing Herb Sutter and Bjarne Stroustrup himself.But these C++ operations provide different functionality, don't they?
Yes but so far you did not highlight any need for custom allocation, your problems all seem to come from casting.
-
but so far you did not highlight any need for custom allocation,
I suggest to reconsider the software situation once more.
A pair of row and column values (data model index, address or coordinate) can be passed as a parameter to a C++ new operator.
You can choose then if you need to work with fresh objects (using dynamic memory allocation) or would like to reuse existing data.Is the usage of the construct “placement new” a kind of customised operation?
your problems all seem to come from casting.
I hope that specific software development challenges can be adjusted when the new operator call takes care of casting to the desired target (pointer) data type already.
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
A pair of row and column values (data model index, address or coordinate) can be passed as a parameter to a C++ new operator.
You can choose then if you need to work with fresh objects (using dynamic memory allocation) or would like to reuse existing data.
Is the usage of the construct “placement new” a kind of customised operation?Once again, the model implementation might or might not allocate data. This should not be a problem of the API user.
Could you please provide a concrete example of what you are suggesting?
Otherwise we are just discussing of theory and nobody is gaining any value out of it.
I will not continue the discussion until you provide at least a code snippet -
Could you please provide a concrete example of what you are suggesting?
Does the software situation become really more challenging for passing a few extra parameters to a (member) function when it is “accidentally” (or intentionally) called “new”?
-
… concrete example of what you are suggesting?
- https://isocpp.org/wiki/faq/dtors#placement-new
- https://en.wikipedia.org/wiki/Placement_syntax
- https://stackoverflow.com/questions/222557/what-uses-are-there-for-placement-new
- https://www.geeksforgeeks.org/placement-new-operator-cpp/
- http://blog.aaronballman.com/2011/08/the-placement-new-operator/
- https://thispointer.com/whats-placement-new-operator-and-why-do-we-need-it/
- https://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c
- https://archive.org/details/TICPP2ndEdVolOne
-
The first link clearly states:
ADVICE: Don’t use this “placement new” syntax unless you have to. Use it only when you really care that an object is placed at a particular location in memory. For example, when your hardware has a memory-mapped I/O timer device, and you want to place a Clock object at that memory location.
In case of model indexes, there seems to be no need to use placement new.
-
In case of model indexes, there seems to be no need to use placement new.
- Do you care if customised model data were “placed at a particular location in memory”?
- How do you think about to get direct access to object data which are managed by a class like QVariant?
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
In case of model indexes, there seems to be no need to use placement new.
- Do you care if customised model data were “placed at a particular location in memory”?
No I don't.
- How do you think about to get direct access to object data which are managed by a class like QVariant?
I don't understand the question. Accessing data of a QVariant is possible and trivial, if necessary.
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
Can the data access become more convenient (and safe) for customised data types?
No.
get->change->set is mildly less convenient but infinitely safer.Can you think of an example code, and paste it below, where it would?
-
Can you think of an example code, and paste it below, where it would?
I suggest to take another look at a specific implementation detail: How many function calls do you need finally to get access to a member variable within a customised data model so far?
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
How many function calls do you need finally to get access to a member variable within a customised data model so far?
2 chained.
QModelIndex::data
andQVariant::value<T>
. e.g.:index.data().value<QString>();
. Don't think you can do better.
Can you show us how would yournew
implementation look? Call this a test. You haven't wrote a single line of code in all your posts. I want to check that at least you have a rough idea of what you are talking about -
Don't think you can do better.
I imagine that a single function call will be a bit nicer. It can be that it will still need to combine the other mentioned functions.
(Reminder: The usage of the function “QVariant::value” is “unsafe” for non-core data types so far, isn't it?)You haven't wrote a single line of code in all your posts.
- I find this information partly inappropriate because I contributed a (questionable) test case in this forum.
- Source code might distract from the really relevant software development ideas, doesn't it?
Can you show us how would your
new
implementation look?Did other information sources show in sufficient ways already how such a function can be written?
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
I find this information partly inappropriate because I contributed a (questionable) test case in this forum.
This is a great starting point. Let's assume the overloaded
new
existed. How would you use it in your example?Source code might distract from the really relevant software development ideas, doesn't it?
No, it really helps focusing on the problem, what really matters and what is overhead.
-
How would you use it in your example?
I would not use extra statements in the implementation of the constructor from the class “my_views” because this test case tried to check other details.
No, it really helps focusing on the problem, what really matters and what is overhead.
I prefer an other clarification approach.
Which names can you imagine for functions which determine a pointer data type for a model index?
-
@elfring said in Increasing usage for C++ new operators based on data model indexes?:
Which names can you imagine for functions which determine a pointer data type for a model index?
userType()
as already usedTo clarify a single index can contain multiple data points of non-homogeneous data type