Skip to content
  • 0 Votes
    2 Posts
    1k Views
    M

    After some time I respond to my self,
    the solution was maked in Python with Pandas.

    This link is very ussefull:
    Iterating through groups on: http://pandas.pydata.org/pandas-docs/stable/groupby.html
    Also the book "Python for Data Analysis, West McKinney" pag 255

    This video show how to make calculation:
    ANOVA 2: Calculating SSW and SSB (total sum of squares within and between) | Khan Academy
    https://www.youtube.com/watch?v=j9ZPMlVHJVs

    [code]```
    def getDFrameFixed2D():
    y = np.array([3,2,1,5,3,4,5,6,7])
    k = np.array([1,1,1,2,2,2,3,3,3])
    clusters = pd.DataFrame([[a,b] for a,b in zip(y,k)],columns=['Var1','K2'])
    # print (clusters.head()) print("shape(0):",clusters.shape[0])
    return clusters

    X2D=getDFrameFixed2D()
    MainMean = X2D['Var1'].mean(0)
    print("Main mean:",MainMean)

    grouped = X2D['Var1'].groupby(X2D['K2'])

    print("-----Iterating Over Groups-------------")
    Wss=0
    Bss=0
    for name, group in grouped:
    #print(type(name))
    #print(type(group))
    print("Group key:",name)
    groupmean = group.mean(0)
    groupss = sum((group-groupmean)**2)
    print(" groupmean:",groupmean)
    print(" groupss:",groupss)
    Wss+= groupss
    Bss+= ((groupmean - MainMean)**2)*len(group)

    print("----------------------------------")
    print("Wss:",Wss)
    print("Bss:",Bss)
    print("T=B+W:",Bss+Wss)

    Tss = np.sum((X-X.mean(0))**2)
    print("Tss:",Tss)
    print("----------------------------------")
    //your code here

    [/code] The next job is traduce to c++ or use Python on QT Greetings